We are still actively working on the spam issue.

C Help and Discussion

From InstallGentoo Wiki
Revision as of 22:09, 31 March 2023 by Bright (talk | contribs) (Release options)
Jump to: navigation, search
The C Programming Logo
A set of challenges

C Help and Discussion - or /chad/, is an ongoing general. In it people discuss C/C++ programming, projects that they and others are working on. Show what your working on, and go mess around someones else's code.

I was reading a thread on Lain Chan and I thought /g/ might like it, they did.


Tools

Building and Build systems

Autotools

GNU Autotools is a build system that generates Makefiles which comply to GNU Coding Standards, which makes it easier for users of your software to adjust the build process for their needs. The ability to do out-of-tree builds, cross-compilation and staged installs comes out of the box, so you don't have to implement it yourself.

Video guide by David A. Wheeler

Makefile

"A Makefile a day keeps the doctor away." - me

Makefiles provide a very useful basis and if you fully grasp them, you can do most anything with enough investment. Though in most cases it's better to use Makefiles for small and simple projects.

CMake

CMake is a multi-platform build system that is a modern alternative to Autotools. It's generally considered to have bad syntax.

Meson

CMake with better syntax.

Debugging tools

Valgrind

Splint

gdb

lldb

Recommended Build Options

Warnings

GCC Warnings are listed here. For GCC, it is generally recommended to use -Werror -Wall -Wextra -Wpedantic; and for Clang it's recommended to use -Werror -Weverything.

-Werror Make all warnings into errors.

-Wall Enables a large set of warnings, some of which may be undesirable. Very recommended to use.

-Wextra This enables some extra warning flags that are not enabled by -Wall. Recommended to use.

-Wpedantic Issue all the warnings demanded by strict ISO C and ISO C++; reject all programs that use forbidden extensions, and some other programs that do not follow ISO C and ISO C++. For ISO C, follows the version of the ISO C standard specified by any -std option used (Example: -std=c99).

-std= Determine the language standard. See Language Standards Supported by GCC, for details of these standard versions. This option is currently only supported when compiling C or C++. -std=c99 is usually a good choice.

Release options

GCC optimization options can be seen here. -O2 -DNDEBUG Provides good optimizations for most use-cases.


-O0

Reduce compilation time and make debugging produce the expected results. This is the default.

-O or -O1

Optimize. Optimizing compilation takes somewhat more time, and a lot more memory for a large function. With -O, the compiler tries to reduce code size and execution time, without performing any optimizations that take a great deal of compilation time.

-O2

Optimize even more. GCC performs nearly all supported optimizations that do not involve a space-speed tradeoff. As compared to -O, this option increases both compilation time and the performance of the generated code.

-O3

Optimize yet more. -O3 turns on all optimizations specified by -O2 and some additional flags.

-Ofast

Disregard strict standards compliance. -Ofast enables all -O3 optimizations. It also enables optimizations that are not valid for all standard-compliant programs. It turns on -ffast-math, -fallow-store-data-races and the Fortran-specific -fstack-arrays, unless -fmax-stack-var-size is specified, and -fno-protect-parens. It turns off -fsemantic-interposition.

-Os

Optimize for size. -Os enables all -O2 optimizations except those that often increase code size. It also enables -finline-functions, causes the compiler to tune for code size rather than execution speed, and performs further optimizations designed to reduce code size. Generally not recommended due to its "hyper-focus" on minimizing the size of a program, even at the expense of obvious, highly beneficial optimizations.

-Og

Optimize debugging experience. -Og should be the optimization level of choice for the standard edit-compile-debug cycle, offering a reasonable level of optimization while maintaining fast compilation and a good debugging experience. It is a better choice than -O0 for producing debuggable code because some compiler passes that collect debug information are disabled at -O0. Like -O0, -Og completely disables a number of optimization passes so that individual options controlling them have no effect. Otherwise -Og enables all -O1 optimization flags except for those that may interfere with debugging.

Debug options

-Og -g -fsanitize=address,undefined, use -ggdb instead of -g if you intend to use GNU Debugger.

Tools like Valgrind, Splint will help you debug and improve your code.

Diagnostic options

Consider -fno-diagnostics-show-caret for GCC or -fno-caret-diagnostics for Clang to reduce the number of lines per actual error in the compiler output.

C Misconceptions

C is a small language!

C is often called a small language but this is simply not true. Its small RELATIVE to other languages. The set of information that is C is quite large on its own and takes a long time to master completely ("Master" could be defined as the ability to write a working standards-compliant compiler).

C has no package manager!

C has many, many package managers, one for every GNU/Linux Distribution.

C's lack of memory safety leads to buggy programs!

Good coding habits will prevent many such bugs. There are also tools like ASan and UBSan which help find memory bugs during testing.

Useful Links

Getting started

Challenge

Books

Standards

Notable Projects Summited

Advice

How to be an Above-Average Programmer starting from University

From >>92426366 In >>92422644, slightly edited:

If you are in University, I think it's a good idea to supplement the classes with your own extra learning in the niches you see yourself in in the future. There's also no harm in learning things earlier than planned in your syllabus (see also: https://sive.rs/kimo). If anything, it will make it easier to get good grades and also solidify the material in your mind by going over it twice. However, it shouldn't be taken to an extreme where you're spending every waking hour in front of the computer and neglect your health or social life. Balance is important too.

University teaches you a lot of things, but there is often not enough time to cover everything in as much detail as needed to actually get good at programming. For example, I learned enough C to write a simple game but didn't know about arena allocators, struct padding, aliasing and restrict, cache locality, CMake. They taught me how to write one-file Python scripts but not how to organize larger projects with modules, virtualenv, requirements.txt, etc.

Above all, it's worth the effort to practice "professional" development early. In a lot of universities you can get by writing many small programs (<1000 lines) so you never get practice with larger ones. Start some multi-month and multi-thousand-line-of-code projects - either personal or a university project that might use in multiple classes. Use all the standard practices: host it on GitHub/GitLab/Codeburg/etc - It can be private if you're shy. Write good commit messages; write a nice README.md; use Make/CMake/Meson and write down build instructions; use a readable coding style and refactor from time to time; write some tests with CMocka for the tricky algorithmic parts. After you get some practice, try contributing to open source projects! They often have a bunch of bugs in their issue tracker that aren't a priority but they'll still happily take fixes for.

Here's why I advise to do larger, more "professional" projects early and contribute to open source: I've found that working on non-trivial programs is like a muscle that you can train, and largely independent of the language. When I was a teenager, I used to think that a 600 line program is large and A* is a complex algorithm to implement. These notions seem laughable to me now, and the change happened after I wrote a couple of 3-10 thousand line personal projects and implemented some 500+ line algorithms at university.

It is valuable to be able to come up with an idea for a program, write 5000 lines of code at a steady pace, and end up with something similar to the higher-quality projects you can find on GitHub: a nice commit history, a README.md that clearly explains how to build and use the software, an issue tracker with all the bugs that haven't been fixed yet, and code that's easy for people to find their way around. It's also valuable to be able to jump into someone else's codebase, quickly orient yourself, and add good code that matches the conventions of the project. These skills will give you a leg up but you don't always get them from attending university.

Editor note: These ideas apply to even if you're not a University student, though you must define your own syllabus and you'll have to do the grading yourself. Start somewhere, and start writting code and try to follow anons advice.